POSIX®: Certified by IEEE and The Open Group – a briefing.

The Source for POSIX Certification

http://posixcertified.ieee.org

January 2006.

Acknowledgements: Thanks to Michael Gonzalez for several of the POSIX.13 slides
Agenda

- What is POSIX?
- POSIX 1003.1, 2004 Edition Status
- POSIX 1003.13-2003
 - PSE54 Multipurpose Realtime Product Standard
 - PSE52 Realtime Controller Product Standard
- POSIX: *Certified by IEEE and The Open Group*
POSIX® /pahz–icks/

- POSIX, pronounced pahz–icks as in positive, not poh–six, or other variations
- POSIX is a registered trademark of the IEEE
 - Licensed through certification
- An acronym for Portable Operating System Interface
POSIX® /pahz-icks/

- POSIX is a family of standards developed by the Portable Applications Standards Committee (PASC) of the IEEE Computer Society

- Main subject areas:
 - System Interfaces (C, Fortran, Ada Bindings)
 - Commands & Utilities
 - Test Methods
What is POSIX?

- It's about *portability*
 - Both programmers and application source code
 - Portability of the OS kernel itself and/or application binary code are *not* objectives
- POSIX is a set of books specifying APIs
 - It is neither a piece of code
 - Nor an operating system
 - It is a rich, proven API
What is an API?

- Application Program Interface
- A written contract between system developers and application developers
- It is not a piece of code, it is a piece of paper defining what the two sets of developers are guaranteed to receive and are in turn responsible for providing
The Need for Standard APIs

- Standardized “square” peg in the round hole
 - “bits where change is not interesting”
 - Where the benefits of commonality outweigh the value of differences
 - Where we can achieve economies of scale, including interoperability
Scalable API Portability

POSIX APIs support portability across a range of devices

POSIX 1003.1, 2004 Edition

- Approved December 6th 2001
- 2004 Edition incorporates two Technical Corrigenda
- Developed by the Austin Group (see later)
- Supersedes all the major POSIX standards except 1003.13 (realtime profiles) and 1003.5 (Ada bindings)
- A combined system interfaces (including all realtime POSIX) and utilities specification as a single 4000 page standard
- The core of DoD’s mandated Joint Technical Architecture (JTA) OS Services, replacing 1003.1-1996 and its amendments
- Technically identical to the Base specifications of the Single UNIX Specification and ISO 9945
The Common Base Specifications

IEEE Std 1003.1,
ISO/IEC 9945
The Open Group Base Specifications Issue 6

The Core of the Single UNIX Specification V3
The *Austin Group* combines the formal standards process of the IEEE and ISO, with the industry standards of The Open Group and the community at large.

- *Electronic participation*
- *Participation in the group is free.*
- *The final standard in html is available for free download from the world wide web.*
Motivation for the Profiles Standard

- The POSIX 1003.1 Standard:
 - Allows writing portable real-time applications
 - Very large: inappropriate for embedded real-time systems

- POSIX.13:
 - Defines four real-time system subsets (profiles)
 - \textit{Minimal}: Small embedded systems
 - \textit{Controller}: Industrial controllers
 - \textit{Dedicated}: Large embedded systems
 - \textit{Multi-Purpose}: Large general-purpose systems with real-time requirements
 - C and Ada language options
POSIX 1003.13-2003

- Approved December 10th 2003
- A set of POSIX Realtime profiles
- Supersedes POSIX.13-1998 updated to address
 - 1003.1-2001 (which includes all of realtime POSIX)
 - Profiles of all 1003.5-series standards (Ada bindings to POSIX)
 - Field experience with 1003.13-1998
 - Input from the Linux, realtime and/or embedded Linux, and traditional RTOS communities
POSIX 1003.13

- POSIX 1003.13 is a subprofile standard of 1003.1-2001
 - It allows diverse realtime operating systems “clothed” with a runtime library to comply
 - This standardizes the application-to-RTOS API, allowing considerable application code portability between different RTOS offerings, which portability had not been possible in the past
 - RTOS+wrapper offerings can be compared and competed directly
 - There are currently four profiles
POSIX 1003.13 Profiles Overview

- Defines four real-time system subsets (profiles)
 - **Minimal**: Small embedded systems
 - Platform: Small embedded system, with no MMU, no disk, no terminal
 - Model: controller of a “Toaster”
 - **Controller**: Industrial controllers
 - Platform: Special purpose controller, with no MMU, but with a disk containing a simplified file system
 - Model: industrial robot controller
POSIX 1003.13 Profiles Overview

- **Dedicated**: Large embedded systems
 - Platform: Large embedded system with file system on disk, with an MMU; software is complex and requires memory protection and network communications
 - Models: avionics controller, cellular phone cell node

- **Multi-Purpose**: Large general-purpose systems with realtime requirements
 - Platform: Large real-time system with all the features, including a development environment, network communications, file system on disk, terminal and graphical user interfaces, etc.
 - Model: workstation with realtime requirements:
 - air traffic control systems
 - telemetry systems for Formula One racing cars
POSIX 1003.13 Profiles

Portable Operating System Interface
IEEE Standard POSIX 1003.13

Networking
Asynchronous I/O
Multiple Processes

Simple File System
Message Queues
Tracing

Core
Minimal
PSE51

Controller
PSE53
Dedicated

Multi-Purpose
Shell & Utilities
Multiple Users
Full File System
Others
PSE54

Options
POSIX 1003.13 Timeline
POSIX® Certified by IEEE and The Open Group

How compliance claims can be proven....
Program Principles

- Clear and well-defined:
 - certification policies
 - processes for achieving and maintaining certification
 - based on industry best practice.

- Certification backed up by conformance testing
Certification Agreement

- Vendor guarantee of conformance to specifications.
 - Vendor 'Warrants & Represents'

- This guarantee ensures that:
 - Products conform to a specification
 - Products remain conformant throughout the life of the product’s registration
 - Any non-conformance will be fixed in a timely manner
Benefits of Certification(1)

- For Procurement:
 - Assurance of POSIX conformance and interoperability
 - Level of assurance matched to the needs of the particular application
Benefits of Certification (2)

- Suppliers can demonstrate and provide objective evidence to their customers that their products are compliant with the industry recognized 2003 edition of IEEE 1003.1 POSIX Standard.

- Products that successfully pass all the test suites and obtain a related certification certificate are able to carry the POSIX Certified trademark.
1003.1-2003 Base Certification

- Certification for the *Base mandatory* features of POSIX 1003.1
- 1003.1-2003 System Interfaces
 - Mandatory POSIX System Interfaces
 - Tested by VSX-PCTS2003
- 1003.1-2003 Shell and Utilities
 - Mandatory POSIX Shell & Utilities
 - Tested by VSC-PCTS2003
POSIX 1003.1, 2003 Test Suites

VSX-PCTS 2003
System Interfaces & Headers

VSXgen - Generic test suite layer

Test Environment Toolkit, (TET3.6-lite)

VSC-PCTS 2003
Shell & Utilities
POSIX 1003.13 Certification PSE54

- PSE54:2003 Certification
 - Covers in addition to 1003.1 several Realtime options from 1003.1
 - Certification against PSE54 Multipurpose Realtime 1003.13 Product Standard
- Tested by:
 - PSE54-2003 Test Suite
 - VSC-PCTS2003
POSIX 1003.13 PSE54, 2003 Test Suites

VSPSE54:2003
System Interfaces & Headers,
(includes threads and realtime options)

VSC-PCTS 2003
Shell & Utilities
(Includes tests for SDO and UP)

VSXgen - Generic test suite layer

Test Environment Toolkit, (TET3.6-lite)
POSIX 1003.13 Certification PSE52

- PSE52:2003 Certification
 - Certification against PSE52 Realtime Controller 1003.13 Product Standard
 - Tested by:
 - PSE52-2003 Test Suite
POSIX 1003.13 PSE52, 2003 Test Suite

VSPSE52:2003
System Interfaces & Headers, (base tests plus core threads and realtime functions)

VSXgen, generic test layer

TETware/RT

Test Architecture Supports Embedded Target

Figure 2: TETware Realtime Testing Architecture
POSIX® : Certified by IEEE and The Open Group – a briefing.

The Source for POSIX Certification

http://posixcertified.ieee.org

January 2006.